

NCE-003-1272003

Seat No.

M. Sc. (ECI) (Sem. II) (CBCS) Examination

April / **May** - 2017

Paper-07: Mathematics for Electronics

Faculty Code: 003 Subject Code: 1272003

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

Instructions: (i) All questions carry equal marks.

- (ii) Figures on right hand side indicate marks.
- 1 Answer the following question in brief: (any seven) 14
 - (1) $\hat{i} \times \hat{i} = \dots$
 - (2) $\hat{i}.\hat{J} =$
 - (3) Define Curl \overline{v}
 - $(4) \quad \frac{dx^n}{dx} = \dots$
 - (5) Define $\int \sin x \, dx$
 - (6) If Z = 2 + i5 then Re (Z)=.....
 - (7) $i^{200} = \dots$
 - (8) If $z = \cos \theta + \sin \theta$ then $|z| = \dots$
 - (9) If $Z = \cos \theta + \sin \theta$ then $Z = \dots$
 - (10) Evaluate $\int_0^1 (x^2 + 2x + 1) dx$

- 2 Answer any two of the following questions: (Each 7 marks) 14
 - (1) Find the volume of parallelepiped if $\overline{a} = -3\hat{i} + 7\hat{J} + 5\hat{k}$, $\overline{b} = -3\hat{i} + 7\hat{J} 3\hat{k}$ and $\overline{c} = -7\hat{i} 5\hat{J} 3\hat{k}$ are the three coterminus edges of the parallelepiped.
 - (2) Show that the volume of the tetrahedron having $\overline{A} + \overline{B}$, $\overline{B} + \overline{C}$, $\overline{C} + \overline{A}$ as concurrent edges is twice the volume of the tetrahendrom having \overline{A} , \overline{B} , \overline{C} as concurrent edges.
 - (3) $\int_0^1 \int_0^x (x^2 + y^2) dA$, where dA indicates small area in xy-plane.
- 3 Answer the following questions:
 - (1) Evaluate $\int_0^{\frac{\pi}{2}} \int_{a(1-\cos\theta)}^a r^2 dr d\theta.$ 5
 - (2) Find the area bounded by the parabola $y^2 = 4ax$ and its latus ractum.
 - (3) Evaluate $\int_{-1}^{1} \int_{-2}^{2} \int_{-3}^{3} dx \, dy \, dz$.

OR

- 3 Answer the following questions:
 - (1) Find the volume of the tetrahedron bounded by the planes x = 0, y = 0, z = 0 and x + y + z = a.
 - (2) Simplify the following (a) I^{49} , (b) I^{103} . 5
 - (3) If Z = 1 + i, find (a) Z^2 (b) $\frac{1}{Z}$.

4 Answer the following questions: 14

- (1) Find the smallest positive integer n for which $\left(\frac{1+i}{1-i}\right)^n = 1$.
- (2) Determine the differential equation whose set of independent is 7 $\left\{e^x, xe^x, x^2e^x\right\}$.

5 Answer any two of the following questions: (Each 7 marks) 14

- (1) Express in polar form : $1 \sqrt{2} + i$.
- (2) Express $\frac{(\cos\theta + i\sin\theta)^8}{(\sin\theta + i\cos\theta)^4}$ in the form (x+iy).
- (3) State and prove Green's theorem for a plane.
- (4) State only Stoke's theorem and Gauss theorem of divergence. 7